Universal geometric condition for the transverse instability of solitary waves

نویسنده

  • Bridges
چکیده

Transverse instabilities correspond to a class of perturbations traveling in a direction transverse to the direction of the basic solitary wave. Solitary waves traveling in one space direction generally come in one-parameter families. We embed them in a two-parameter family and deduce a new geometric condition for transverse instability of solitary waves. This condition is universal in the sense that it does not require explicit properties of the solitary wave-or the governing equation. In this paper the basic idea is presented and applied to the Zakharov-Kuznetsov equation for illustration. An indication of how the theory applies to a large class of equations in physics and oceanography is also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transverse instability and its long-term development for solitary waves of the (2+1)-dimensional Boussinesq equation.

The stability properties of line solitary wave solutions of the (2+1)-dimensional Boussinesq equation with respect to transverse perturbations and their consequences are considered. A geometric condition arising from a multisymplectic formulation of this equation gives an explicit relation between the parameters for transverse instability when the transverse wave number is small. The Evans func...

متن کامل

Transverse linear instability of solitary waves for coupled long-wave-short-wave interaction equations

In this paper, we investigate the transverse linear instability of one-dimensional solitary wave solutions of the coupled system of two-dimensional long-wave-short-wave interaction equations. We show that the one-dimensional solitary waves are linearly unstable to perturbations in the transverse direction if the coefficient of the term associated with transverse effects is negative. This transv...

متن کامل

Transverse Instability of the Line Solitary Water-waves

We prove the linear and nonlinear instability of the line solitary water waves with respect to transverse perturbations.

متن کامل

A Simple Criterion of Transverse Linear Instability for Solitary Waves

We prove an abstract instability result for an eigenvalue problem with parameter. We apply this criterion to show the transverse linear instability of solitary waves on various examples from mathematical physics.

متن کامل

Transverse nonlinear instability for two-dimensional dispersive models

We present a method to prove nonlinear instability of solitary waves in dispersive models. Two examples are analyzed: we prove the nonlinear long time instability of the KdV solitary wave (with respect to periodic transverse perturbations) under a KP-I flow and the transverse nonlinear instability of solitary waves for the cubic nonlinear Schrödinger equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 84 12  شماره 

صفحات  -

تاریخ انتشار 2000